Problem: 0(1(1(2(x1)))) -> 1(3(0(1(2(x1))))) 0(1(1(2(x1)))) -> 1(3(1(0(2(x1))))) 0(1(1(2(x1)))) -> 2(3(1(3(0(1(x1)))))) 0(1(2(0(x1)))) -> 1(0(0(2(2(x1))))) 0(1(2(4(x1)))) -> 0(2(3(4(1(x1))))) 0(1(2(4(x1)))) -> 1(0(4(2(3(x1))))) 0(1(2(4(x1)))) -> 1(2(3(0(4(x1))))) 0(1(2(4(x1)))) -> 2(1(4(0(3(x1))))) 0(1(2(4(x1)))) -> 1(2(3(4(0(5(x1)))))) 0(1(2(4(x1)))) -> 2(1(1(0(3(4(x1)))))) 0(1(2(4(x1)))) -> 4(1(2(2(3(0(x1)))))) 0(1(2(4(x1)))) -> 4(5(0(2(3(1(x1)))))) 0(4(2(0(x1)))) -> 0(4(2(3(0(x1))))) 0(4(2(0(x1)))) -> 2(3(0(4(0(0(x1)))))) 0(4(2(0(x1)))) -> 3(4(0(2(3(0(x1)))))) 0(4(2(0(x1)))) -> 4(2(3(0(4(0(x1)))))) 0(4(2(0(x1)))) -> 4(3(0(0(5(2(x1)))))) 0(4(2(4(x1)))) -> 4(0(2(3(1(4(x1)))))) 0(4(2(4(x1)))) -> 4(0(4(2(0(3(x1)))))) 5(1(2(0(x1)))) -> 2(1(3(5(0(x1))))) 5(1(2(0(x1)))) -> 3(1(0(2(5(x1))))) 5(1(2(0(x1)))) -> 2(3(0(0(1(5(x1)))))) 5(1(2(4(x1)))) -> 3(2(5(1(4(x1))))) 5(1(2(4(x1)))) -> 5(2(1(3(4(x1))))) 5(1(2(4(x1)))) -> 5(5(2(1(4(x1))))) 5(1(2(4(x1)))) -> 0(3(4(5(2(1(x1)))))) 5(1(4(2(x1)))) -> 3(4(5(2(1(x1))))) 5(1(4(2(x1)))) -> 2(1(3(4(5(4(x1)))))) 5(1(4(2(x1)))) -> 3(3(4(2(1(5(x1)))))) 5(4(1(4(x1)))) -> 3(4(4(1(5(4(x1)))))) 5(4(1(4(x1)))) -> 4(1(3(5(0(4(x1)))))) 5(4(1(4(x1)))) -> 5(1(3(4(5(4(x1)))))) 5(4(1(4(x1)))) -> 5(1(5(3(4(4(x1)))))) 5(4(2(0(x1)))) -> 5(4(2(3(0(x1))))) 5(4(2(0(x1)))) -> 0(1(2(3(4(5(x1)))))) 5(4(2(0(x1)))) -> 4(5(3(3(0(2(x1)))))) 0(1(2(0(4(x1))))) -> 0(2(4(1(3(0(x1)))))) 0(1(2(0(4(x1))))) -> 2(0(3(4(0(1(x1)))))) 0(1(2(0(4(x1))))) -> 4(0(2(3(1(0(x1)))))) 0(1(4(2(2(x1))))) -> 1(2(3(4(0(2(x1)))))) 5(0(1(2(4(x1))))) -> 3(0(2(1(4(5(x1)))))) 5(1(2(2(4(x1))))) -> 5(2(2(1(4(5(x1)))))) 5(1(2(4(0(x1))))) -> 5(0(2(1(3(4(x1)))))) 5(1(2(4(0(x1))))) -> 5(0(3(2(1(4(x1)))))) 5(1(3(1(4(x1))))) -> 1(5(1(3(4(0(x1)))))) 5(1(4(1(2(x1))))) -> 2(1(5(3(4(1(x1)))))) 5(4(1(1(4(x1))))) -> 1(1(3(4(5(4(x1)))))) 5(4(1(4(0(x1))))) -> 3(4(0(4(5(1(x1)))))) 5(4(3(2(0(x1))))) -> 5(4(0(3(2(3(x1)))))) 5(4(5(2(0(x1))))) -> 5(0(5(4(4(2(x1)))))) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {6,5} transitions: 11(242) -> 243* 11(157) -> 158* 11(274) -> 275* 11(57) -> 58* 11(47) -> 48* 11(32) -> 33* 11(194) -> 195* 11(119) -> 120* 11(261) -> 262* 11(59) -> 60* 11(256) -> 257* 11(44) -> 45* 11(151) -> 152* 11(303) -> 304* 11(298) -> 299* 11(51) -> 52* 11(213) -> 214* 11(11) -> 12* 11(305) -> 306* 11(8) -> 9* 11(317) -> 318* 31(10) -> 11* 31(97) -> 98* 31(87) -> 88* 31(259) -> 260* 31(179) -> 180* 31(154) -> 155* 31(149) -> 150* 31(286) -> 287* 31(69) -> 70* 31(241) -> 242* 31(211) -> 212* 31(273) -> 274* 31(46) -> 47* 31(93) -> 94* 31(73) -> 74* 31(48) -> 49* 31(230) -> 231* 31(195) -> 196* 31(302) -> 303* 31(85) -> 86* 41(75) -> 76* 41(262) -> 263* 41(107) -> 108* 41(289) -> 290* 41(229) -> 230* 41(109) -> 110* 41(301) -> 302* 41(131) -> 132* 41(258) -> 259* 41(158) -> 159* 41(118) -> 119* 41(285) -> 286* 41(275) -> 276* 41(68) -> 69* 41(240) -> 241* 41(200) -> 201* 41(115) -> 116* 41(297) -> 298* 41(95) -> 96* 51(277) -> 278* 51(272) -> 273* 51(182) -> 183* 51(304) -> 305* 51(239) -> 240* 51(209) -> 210* 51(139) -> 140* 51(129) -> 130* 51(141) -> 142* 51(228) -> 229* 51(133) -> 134* 51(315) -> 316* 51(225) -> 226* 51(215) -> 216* 51(287) -> 288* 21(70) -> 71* 21(257) -> 258* 21(227) -> 228* 21(299) -> 300* 21(224) -> 225* 21(214) -> 215* 21(7) -> 8* 21(199) -> 200* 21(74) -> 75* 21(49) -> 50* 21(29) -> 30* 21(196) -> 197* 21(156) -> 157* 21(243) -> 244* 21(21) -> 22* 21(98) -> 99* 21(23) -> 24* 21(210) -> 211* 21(180) -> 181* 21(155) -> 156* 01(45) -> 46* 01(197) -> 198* 01(177) -> 178* 01(117) -> 118* 01(169) -> 170* 01(231) -> 232* 01(9) -> 10* 01(181) -> 182* 01(171) -> 172* 01(96) -> 97* 01(76) -> 77* 01(71) -> 72* 01(31) -> 32* 01(153) -> 154* 01(150) -> 151* 01(130) -> 131* 42(349) -> 350* 42(324) -> 325* 42(353) -> 354* 42(328) -> 329* 42(340) -> 341* 00(2) -> 5* 00(4) -> 5* 00(1) -> 5* 00(3) -> 5* 32(351) -> 352* 32(341) -> 342* 32(363) -> 364* 32(330) -> 331* 32(322) -> 323* 10(2) -> 1* 10(4) -> 1* 10(1) -> 1* 10(3) -> 1* 02(339) -> 340* 02(329) -> 330* 02(361) -> 362* 02(321) -> 322* 02(350) -> 351* 02(325) -> 326* 02(362) -> 363* 02(327) -> 328* 20(2) -> 2* 20(4) -> 2* 20(1) -> 2* 20(3) -> 2* 52(360) -> 361* 30(2) -> 3* 30(4) -> 3* 30(1) -> 3* 30(3) -> 3* 22(359) -> 360* 22(331) -> 332* 22(323) -> 324* 22(352) -> 353* 40(2) -> 4* 40(4) -> 4* 40(1) -> 4* 40(3) -> 4* 50(2) -> 6* 50(4) -> 6* 50(1) -> 6* 50(3) -> 6* 1 -> 171,139,109,87,57,23 2 -> 153,129,95,73,44,7 3 -> 177,141,115,93,59,29 4 -> 169,133,107,85,51,21 8 -> 31* 12 -> 10,46,172,5 22 -> 8* 24 -> 8* 30 -> 8* 32 -> 289* 33 -> 10* 45 -> 227,179,68 50 -> 10,46,172,5 52 -> 45* 58 -> 45* 60 -> 45* 70 -> 315* 72 -> 46,172,301,10,5 74 -> 117* 77 -> 11* 86 -> 74* 88 -> 74* 94 -> 74* 96 -> 285,239,194,149 97 -> 272* 99 -> 11* 108 -> 96* 110 -> 96* 116 -> 96* 117 -> 359,321 118 -> 199* 120 -> 49* 130 -> 297,256 132 -> 97* 134 -> 130* 140 -> 130* 142 -> 130* 150 -> 213* 152 -> 119* 154 -> 301* 159 -> 170,97,46,172,301,10,5 170 -> 154* 172 -> 154* 178 -> 154* 183 -> 158* 195 -> 224,209 198 -> 158* 201 -> 197* 212 -> 210,140,130,297,6 216 -> 140,130,297,6 226 -> 215* 231 -> 240,134,261,210,140,6 232 -> 140,130,297,6 240 -> 261* 243 -> 317,277 244 -> 210,140,6 260 -> 211* 263 -> 229* 276 -> 240,134,130,297,261,6 278 -> 240,134,130,297,261,6 288 -> 242* 290 -> 97* 300 -> 214* 306 -> 140,130,297,6 316 -> 242* 318 -> 240,134,130,297,261,6 322 -> 349,327 324 -> 339* 326 -> 198,158 332 -> 198,158 342 -> 198,158 354 -> 198,158 364 -> 353* problem: Qed